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Abstract This study reports on airborne measurements of stratocumulus cloud properties under varying
degrees of influence from biomass burning (BB) plumes off the California coast. Data are reported from
five total airborne campaigns based in Marina, California, with two of them including influence from
wildfires in different areas along the coast of the western United States. The results indicate that subcloud
cloud condensation nuclei number concentration and mass concentrations of important aerosol species
(organics, sulfate, nitrate) were better correlated with cloud droplet number concentration (Nd) as compared
to respective above‐cloud aerosol data. Given that the majority of BB particles resided above cloud tops,
this is an important consideration for future work in the region as the data indicate that the subcloud BB
particles likely were entrained from the free troposphere. Lower cloud condensation nuclei activation
fractions were observed for BB‐impacted clouds as compared to non‐BB clouds due, at least partly, to less
hygroscopic aerosols. Relationships between Nd and either droplet effective radius or drizzle rate are
preserved regardless of BB influence, indicative of how parameterizations can exhibit consistent skill for
varying degrees of BB influence as long as Nd is known. Lastly, the composition of both droplet residual
particles and cloud water changed significantly when clouds were impacted by BB plumes, with differences
observed for different fire sources stemming largely from effects of plume aging time and dust influence.

1. Introduction

An extensively studied cloud type influenced greatly by aerosols is stratocumulus (Sc). This is the dominant
cloud type by area globally (Warren et al., 1986), covering approximately one fifth of the Earth surface on an
annual basis (Wood, 2012). These clouds are climatically very important as their shortwave cloud albedo for-
cing is larger than their longwave cloud greenhouse forcing, resulting in net cooling over the regions they
cover (Chen et al., 2000; Harrison et al., 1990; Hartmann & Short, 1980; Herman et al., 1980; Stephens &
Greenwald, 1991). The role of these clouds in Earth's radiation budget is significant as a small variation in
their microphysical properties can lead to a large impact on Earth's energy balance. For instance, Slingo
(1990) reported that the radiative impact exerted by doubling of carbon dioxide (CO2) can be offset under
the following circumstances: (i) 15–20% increase in amount of low clouds, (ii) 20–35% increase in liquid
water path (LWP), and (iii) 15–20% decrease in mean droplet effective radius (re). In another study, Jones
et al. (2009) suggested that a modification of Sc microphysical properties via geoengineering activities can
partially offset radiative forcing associated with greenhouse gas levels.

The northeast Pacific (NEP) Ocean region is home to one of the three major Sc decks in the world and is
impacted by multiple wildfire incidents annually, with the prevalence and severity of events expected to
increase in coming years (Barbero et al., 2015; Dennison et al., 2014; Flannigan et al., 2000; Hallar et al.,
2017; Moritz et al., 2012). The general transport pattern of plumes from fires near the western United
States coast results in biomass burning (BB) particles both above and within the marine boundary layer
(MBL; Mardi et al., 2018). This motivates BB‐Sc interaction studies owing to the impact BB plumes can have
on the MBL (Brioude et al., 2009; Johnson et al., 2004), with poorly characterized and potentially different
effects if the plumes reside either above or below the cloud deck.
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There is a growing number of field studies investigating the role of BB particles in both serving as cloud con-
densation nuclei (CCN) and altering cloud microphysical properties. Recent examples in the southeast
Atlantic (SEA) region were reviewed by Zuidema et al. (2016) and include ObseRvations of Aerosols above
CLouds and their intEractionS, Layered Atlantic Smoke Interactions with Clouds, Aerosol Radiation and
Clouds in southern Africa, and Clouds and Aerosol Radiative Impacts and Forcing: Year 2016, in addition
to older campaigns such as the Southern African Regional Science Initiative (SAFARI 2000; Swap et al.,
2002). Past work has examined the vertical distribution of BB aerosols relative to the Sc deck and the extent
to which BB layers in the SEA region remain well separated from the underlying Sc deck (Das et al., 2017; Lu
et al., 2018; Rajapakshe et al., 2017). The vertical distance between BB aerosols and the Sc deck plays a vital
role in BB layer impact on Sc radiative properties (Costantino & Bréon, 2010, 2013; Diamond et al., 2018;
Koch & Del Genio, 2010; Wilcox, 2012).

While there has been extensive research focused on the SEA region for BB‐Sc interactions, less is known
about BB‐Sc interactions over the NEP region, which traditionally has received attention due to extensive
shipping that leads to strong aerosol perturbations that facilitate aerosol‐cloud interaction research (e.g.,
Russell et al., 2013; Sorooshian et al., 2019). Wildfires over the western United States, especially along the
coast (Dadashazar et al., 2019; Maudlin et al., 2015; Schlosser et al., 2017), allow for an opportunity to exam-
ine how strongly aerosol perturbations in a form other than shipping impacts the Sc deck. The current study
serves as the second part to a previous study (Mardi et al., 2018), which investigated characteristics of the BB
plumes (e.g., altitude, location relative to cloud top height, thickness, number of vertically adjacent layers,
interlayer distances, and aerosol size distributions) and vertical profiles of shortwave heating rates in the
presence of BB plumes. This study uses the same data set to address the impact of BB particles on Sc micro-
physical and chemical properties for the NEP region, with a focus on the following: (i) relationships between
aerosol perturbations and cloud microphysical characteristics such as droplet size distributions and drizzle
rate; (ii) variations in vertical structure of cloud Nd due to BB plumes interacting with clouds; and (iii) the
influence of BB aerosols on cloud droplet residual particle and cloud water composition. The results of this
work have implications for general understanding of aerosol‐cloud interactions, especially for regions facing
growing amounts of exposure to BB emissions.

2. Experimental Methods
2.1. Center for Interdisciplinary Remotely‐Piloted Aircraft Studies Twin Otter Missions

Airborne data reported in this work were collected by the Center for Interdisciplinary Remotely‐Piloted
Aircraft Studies Twin Otter aircraft during five separate field campaigns: (i) the first Marine
Stratus/Stratocumulus Experiment (MASE I, July 2005); (ii) the second Marine Stratus/Stratocumulus
Experiment (MASE II, July 2007); (iii) the Nucleation in California Experiment (NiCE, July‐August 2013);
(iv) the Biological and Oceanic Atmospheric Study (BOAS, July 2015); and (v) the Fog And Stratocumulus
Evolution (FASE, July‐August 2016) experiment. Detailed information for each campaign, including flight
tracks, instruments onboard the aircraft, andmeasurement details such as quality control and assurance pro-
tocols are explained in Sorooshian et al. (2018). Of relevance to this work is that each flight contained aircraft
soundings during which vertical profiles were obtained between the subcloud and above‐cloud regions via
either a spiral or slant maneuver. More detailed descriptions of soundings can be found in Sorooshian
et al. (2018).

Extensive wildfire activity was present in the study region during two of the campaigns, specifically the NiCE
and FASE campaigns. During NiCE, BB plumes were transported parallel to the California coastline from
the California‐Oregon border where there was a cluster of fires (Sorooshian et al., 2015): Big Windy,
Whiskey Complex, Douglas Complex. During FASE, the source of the BB aerosols was much closer to the
study domain as the Soberanes Fire (Garrapta State Park) and was only ~30 km southwest of the aircraft base
in Marina, California (Schlosser et al., 2017). The criteria used to determine if an aircraft sounding during a
particular flight was impacted by BB particles was if the aerosol number concentration (Na) measured with a
Passive Cavity Aerosol Spectrometer Probe (PCASP; diameter >120 nm) exceeded 1000 cm3 at any altitude
extending from near the surface to the free troposphere (FT). This criterion was defined based on measure-
ments from 352 vertical soundings from more than 73 research flights without any BB influence, with the
1000 cm3 threshold value exceeding the mean plus three times the standard deviation of Na during
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soundings without any BB impact (Mardi et al., 2018). This criterion was
shown to be reliable based on confirmation from carbon monoxide (CO)
data and olfactory and visual evidence by flight scientists during the
research flights. Plumes of BB particles impacted soundings in eight out
of 23 and 12 out of 15 research flights during the NiCE and FASE
campaigns, respectively.

Figure 1 demonstrates the spatial distribution of 30 BB‐impacted sound-
ings analyzed in this study. Traces of BB particles were observed either
above or below the Sc layer. Cloud and aerosol data obtained from sound-
ings of the other three field campaigns, in addition to non‐BB‐impacted
soundings in NiCE and FASE, are used here to represent background con-
ditions to contrast with BB data.

2.2. Cloud Measurements

Cloud droplet size distribution characteristics such as droplet number
concentration (Nd) and droplet effective radius (re) were measured with
a Forward Scattering Spectrometer Probe (Particle Measuring Systems,
Inc., modified by Droplet Measurement Technologies, Inc.) in
20‐diameter bins between 2 and 45 μm. Rain rate (R, mm day−1) was cal-
culated using the size distribution of drops with diameters between 0.025
and 1.56 mm obtained from a Cloud Imaging Probe, in conjunction with
documented relationships between drop size and fall velocity (e.g., Chen
et al., 2012; Feingold et al., 2013). Cloud liquid water content (LWC)
was measured using a PVM‐100A probe (Gerber et al., 1994).

Compositional measurements were conducted two ways in clouds, speci-
fically to characterize droplet residual particles and cloud water. The com-
position of cloud droplet residual particles was measured using a Compact
Time‐of‐Flight Aerosol Mass Spectrometer (AMS; Aerodyne Research
Inc.; Coggon et al., 2012) coupled to a Counter‐flow Virtual Impactor

(CVI; Brechtel Mfg. Inc.) inlet. The AMS instrument measures nonrefractory constituents of particles. For
the data sets used here, the cutpoint diameter of droplets sampled by the CVI was ~11 μm with a transmis-
sion efficiency that decreased with increasing droplet size mainly owing to inertial deposition (Shingler
et al., 2012). Both the AMS and CVI were used in the NiCE campaign but not during FASE. Owing to uncer-
tainties in quantifying accurate mass concentrations with the AMS downstream of the CVI (AMS‐CVI), rela-
tive mass concentrations between species are the focus of the AMS‐CVI data.

For the NiCE campaign, cloud water samples were collected by a modified Mohnen slotted‐rod collector
(Hegg & Hobbs, 1986), which was deployed manually out of aircraft during the in‐cloud portion of research
flights. Samples were stored in high‐density polyethylene bottles in a cooler with a nominal temperature of
5°C. A detailed description of sampling process can be found in MacDonald et al. (2018). For the FASE mis-
sion, cloud water samples were collected with an axial cyclone cloud water collector (Crosbie et al., 2018)
mounted on the aircraft wing. As air passes through the sampler, a helical flow pattern forms that centrifug-
ally separates larger droplets from the flow and impacts them on the sampler's inner wall. These collected
droplets get pumped to polypropylene centrifuge tubes that are capped immediately after collection and
stored also at 5°C.

Three types of analyses were conducted on cloud water samples, including pH, water‐soluble ionic composi-
tion, and water‐soluble elemental composition. Sample pH was measured with a Thermo Scientific Orion
9110DJWP pH probe for the NiCE campaign and a Thermo Scientific Orion 8103BNUWP Ross Ultra
Semi‐Micro pH probe for the FASE campaign. Both probes were calibrated with 4.01 and 7.00 pH buffer
solutions prior to measurements. Ionic composition was measured with the ion chromatography (IC) tech-
nique using a Thermo Scientific Dionex ICS‐2100 system. Elemental composition was measured by
Inductively Coupled Plasma Mass Spectrometry (Agilent 7700 Series) for NiCE and by triple quadrupole
inductively coupled plasma mass spectrometry (ICP‐QQQ; Agilent 8800 Series) for FASE. A list of each

Figure 1. Approximate location of BB‐impacted soundings during NiCE
(n = 14) and FASE (n = 16), shown in gray. Of the mentioned soundings,
eight from NiCE and five from FASE are further analyzed as case studies
(Table 1), which are shown as solid gray markers; the rest are left as unfilled
markers. Five soundings from NiCE and two from FASE are examined as
non‐BB‐impacted cases (Table 1), which are shown as solid red markers.
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measured IC and ICP species and their limits of detection are provided in Table S1 of the supporting
information. All mass concentrations from the cloud water analyses represent total air‐equivalent
concentrations by multiplying aqueous concentrations by the average LWC experienced during sample
collection for when LWC exceeded a threshold value of 0.02 g m−3.

2.3. Aerosol Measurements

Aerosol size distribution data were obtained with a PCASP probe (Particle Measuring Systems, Inc., modi-
fied by Droplet Measurement Technologies, Inc.), which resolved number concentrations in 20 different
diameter bins between 0.12 and 2.95 μm and 0.12 and 3.42 μm for NiCE and FASE, respectively. CCN num-
ber concentrations were measured at 1‐Hz resolution by a continuous flow streamwise thermal gradient
CCN counter (Droplet Measurement Technologies; Lance et al., 2009) at a constant supersaturation of
0.2%. Aerosol parameters reported subsequently as being above cloud denote vertically averaged values from
cloud top to 100 m above tops. Also, below‐cloud values refer to vertically averaged values from immediately
below the cloud base to the lowest possible altitude at which data were collected below bases.

2.4. Case Study Analysis of BB Impacts on Sc

To gain insight into the impact of BB plumes on Sc microphysical properties, soundings with the highest
level of BB aerosols are compared to those with lowest level of any type of aerosols (Figure 1). More specifi-
cally, the chosen BB‐impacted soundings exhibited the highest PCASP Na concentrations above the cloud
top, while the selected non‐BB‐impacted soundings exhibited the lowest total mass concentration among
the cumulative set of species measured in cloud water samples. Relevant cloud and aerosol characteristics
for these selected soundings are summarized in Table 1.

Owing to the difficulty of collecting cloud water during each sounding, the cloud water samples were col-
lected during the horizontal flight legs in cloud near each sounding. Cloud water samples were denoted
as BB‐impacted if BB plumes were present either above or below the cloud layer. The same strategy was
employed for the AMS‐CVI measurements for which data were collected near the soundings as there was
insufficient time during soundings to collect such data.

Table 1
A summary of cloud layer‐mean property (LWP, Nd, re) values, PCASP aerosol number concentration (Na) above and below clouds, and cloud water (CW) pH and
total air‐equivalent mass concentration of a wide suite of species (see Tables S2 and S3) for soundings during NiCE and FASE with and without BB influence

Campaign BB influence Date
LWP

(g m−2)
Nd

(cm−3)
re

(μm)
Na above
(cm−3)

Na below
(cm−3) CW pH

CW mass concentration
(μg m−3)

NiCE BB 7/29/2013 338 134 11 790 N/A 4.21 ± 0.28 29.66 ± 14.64
7/29/2013 162 212 9 1,833 1,118
7/29/2013 197 162 10 3,279 405
7/29/2013 198 131 10 3,993 379
7/30/2013 59 119 10 511 389
8/2/2013 59 144 8 1,288 N/A
8/2/2013 71 147 8 1,707 394
8/2/2013 76 276 7 803 432

Non‐BB 7/16/2013 69 29 13 102 108 4.63 ± 0.16 1.21 ± 0.23
7/16/2013 180 69 13 90 123
7/16/2013 164 128 11 141 240
7/16/2013 154 75 13 328 157
7/24/2013 68 17 14 75 N/A

FASE BB 8/4/2016 45 203 6 5,105 365 6.85 ± 0.22 11.73 ± 10.37
8/4/2016 44 185 6 5,599 1,230
8/4/2016 42 134 7 775 207
8/4/2016 11 116 6 1,536 628
8/11/2016 107 233 7 4,008 4,489

Non‐BB 8/5/2016 88 61 11 323 59 4.81 ± 0.08 1.71 ± 1.21
8/5/2016 81 27 12 355 51

Note. Asmultiple cloudwater samplesmay have been collected near the soundings summarized, there weremore data points used in the calculation of the CW as
compared to the number of soundings for the four categories below: NiCE = 8 (BB) and 6 (non‐BB); FASE = 12 (BB) and 7 (non‐BB). “N/A” entries in the Na
column indicate insufficient flight time below cloud base to get a reliable measurement of aerosols.
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3. Results and Discussion
3.1. CCN‐Nd Relationship at Cloud Base and Top

Activation of CCN into cloud droplets occurs via several mechanisms. This typically occurs via updrafts car-
rying aerosols at cloud base (primary activation) or by entrainment through turbulent mixing at cloud top or
edge (secondary activation; Hoffmann et al., 2015; Korolev & Mazin, 1993; De Rooy et al., 2013; Slawinska
et al., 2012). The relative importance for each of these mechanisms in influencing the Nd budget may vary
depending on various parameters such as level of turbulence or concentration of aerosols adjacent to a cloud
either aloft in the FT or below in the MBL. Our measurements provide an opportunity to examine the rela-
tive degree of importance for both mechanisms.

Figure 2 examines the relationship between cloud layer‐mean Nd and CCN0.2% concentrations based on 14
soundings with BB influence. Nd exhibited an average ± standard deviation of 125 ± 48 cm3, while above‐
cloud CCN0.2% exhibited an average of 454 ± 493 cm3 as compared to 157 ± 97 cm3 below cloud. The results
indicate a greater correlation between log (Nd) and log (CCN0.2%) below cloud base (r = 0.91; p < 0.01) as
compared to log (CCN0.2%) above cloud top (r= 0.49; p= 0.08); note that in our discussion of correlative rela-
tionships, that p < 0.05 corresponds to statistical significance. The exponent of the power law fitted to the
points is also different for each scenario, with values of 0.17 and 0.48 when using CCN0.2% above and below
cloud, respectively. Past studies have quantified cloud responses to BB aerosols by computing the value of
∂ln(Nd)/∂ln(CCN), which corresponds to the power of X for the power law fit depicted in Figure 2. For the
SEA region, values of this parameter based on CCN0.3% data below and above cloud were 0.45 and 0.16
(Diamond et al., 2018), respectively. These values are comparable to those shown in Figure 2 of this study
based on CCN0.2% data.

As another way of examining whether above‐cloud or subcloud aerosols are more influential in impacting
Nd, aerosol chemical markers were compared toNd. In the study region, aerosol composition has been exten-
sively characterized with sulfate shown to be an excellent marker for MBL sources such as ship exhaust and
marine emissions, specifically dimethylsulfide (DMS; Coggon et al., 2012; Wang et al., 2016). Nitrate and
organics have been shown to be remarkably enhanced in BB airmasses (Coggon et al., 2014). Subcloud
and above‐cloud AMS mass concentrations of sulfate, nitrate, organics, and ammonium were compared to
cloud layer‐mean Nd for 13 available BB‐impacted clouds during NiCE (AMS data unavailable during
FASE). The subcloud concentrations of sulfate, nitrate, and organics exhibited higher linear correlations
with Nd (r = 0.31, 0.31, 0.38, and p = 0.30, 0.35, 0.22, respectively) as compared to above‐cloud concentra-
tions (r = 0.25, −0.21, −0.02, and p = 0.43, 0.59, 0.96, respectively). Ammonium exhibited negative relation-
ships with Nd (subcloud r = −0.25, p = 0.63; above‐cloud r = −0.33, p = 0.52). Although none of the
mentioned correlations were statistically significant (i.e., p < 0.05), the subcloud mass concentrations of

Figure 2. Relationship between cloud layer‐mean Nd and the average CCN0.2% number concentration calculated for
BB‐impacted soundings (a) above cloud (between cloud top and 100 m above cloud top) and (b) below cloud base. Ten
of the soundings were from NiCE (bowtie markers) and four were from FASE (square markers).
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sulfate, nitrate, and organics were still better related to Nd, which is consistent with the conclusions derived
from Figure 2.

These collective results are indicative of the greater role played by primary activation of CCN near cloud base
as compared to secondary activation of CCN entrained at cloud top. This result is consistent with those of
Diamond et al. (2018), who similarly reported a higher correlation between Nd and subcloud CCN concen-
tration for the SEA region during the ObseRvations of Aerosols above CLouds and their intEractionS study.
In both Diamond et al. (2018) and the current study, it is hypothesized that the increase in amount of
aerosols below the cloud is due to entrainment of BB aerosols from cloud top to below the cloud. While
Table 1 shows the obvious result that Na values are much higher above cloud in BB conditions 2,400 cm3

(95% confidence interval, 1,518–3,363 cm3) versus non‐BB conditions 202 cm3 (110–294 cm3), an important
result is that BB conditions also yielded much higher Na values below cloud 912 cm3 (415–1,725 cm3) versus
123 cm−3 (73–180 cm−3). Thus, primary activation of subcloud CCN into cloud droplets is not limited to
aerosols emitted within the MBL but rather can be entrained from the FT as documented in several past
works (e.g., Capaldo et al., 1999; Clarke et al., 1998; Dadashazar et al., 2018; Katoshevski et al., 1999;
Wood et al., 2012). Past work has examined how the variation in subcloud aerosol number concentration
is related to parameters such as the gradient of CCN number concentration between vertical layers above
and below cloud, boundary layer depth, and the time passed since aerosol and cloud layer have come into
contact (e.g., Diamond et al., 2018; Wood et al., 2012). We compared CCN0.2% concentrations below and
above cloud for the cases in Figure 2 and observed a significant correlation (r= 0.69, p< 0.01), with the same
conclusion reached when comparing Na below and above cloud (r = 0.60, p = 0.02; Figure S1). These results
provide support for both the interconnectedness in CCN below and above clouds. It is critical to note though
that there are factors preventing a stronger instantaneous correlation between above and below cloud BB
particles such as the time dependence of entrainment (e.g., Bretherton et al., 1995; Diamond et al., 2018)
and also precipitation (e.g., Wang et al., 2013).

The ease of above‐cloud CCN to reach the subcloud region depends in part on how close the BB plume is to
cloud top. To address this issue, we examined the relationship between both cloud layer‐mean Nd and sub-
cloud CCN0.2% concentration and the vertical distance between top of the cloud and bottom of the BB layer
(referred to as AB2CT based on the terminology presented by Rajapakshe et al., 2017, to represent the gap
between aerosol layer bottom to cloud top height; Figure S2). The base of the BB aerosol layer was defined
as the lowest altitude of the plume where Na exceeded 1,000 cm3 based on our previous work with the same
data set (Mardi et al., 2018). A weak negative correlation was observed between cloud layer‐mean Nd and
AB2CT (r = −0.27, p = 0.35). The correlation became more negative for subcloud CCN0.2% (r = −0.45,
p = 0.11) versus AB2CT likely due to other additional factors involved with droplet activation. These nega-
tive relationships are suggestive of the importance of BB plume proximity to cloud top for being able to
impact both the MBL CCN budget.

3.2. Na‐Nd Relationship

Various physically based droplet activation schemes have established a relationship between cloud bulk
microphysical properties and Na for application in climate models (Abdul‐Razzak & Ghan, 2000; Chuang
et al., 1997; Nenes & Seinfeld, 2003; Simpson et al., 2014). However, several factors add to the complexity
of understanding and modeling of droplet activation. A factor limiting accurate simulation of droplet activa-
tion is linked to insufficient field data, specifically for a wide range of aerosol types including BB particles.
Motivated by this shortcoming, we examined how well a commonly used equation relating Na and Nd

performs with and without BB influence. Prior to doing so, it is worth noting that the two aerosol proxy vari-
ables used thus far, CCN0.2% and Na, were related with high correlation coefficients when compared to one
another below (r = 0.88, p < 0.01) and above cloud (r = 0.72, p < 0.01) for the BB cases inFigure S3.

Parameterizations ofNd based onNa have been suggested in various formats (e.g., linear, exponential, power
law) depending on the application, data set, and for various levels of required computation (Jiang et al., 2008
and references therein). One of the frequently used, yet simple, schemes is a power law relationship between

cloud mean Nd and Na at cloud base: NdeαNβ
a. This scheme is based on the assumption that for nonpreci-

pitating clouds, droplet growth is dominated by the condensation processes and that Nd is uniform through
the depth of the cloud. On the aerosol side, a homogeneous chemical composition is assumed for aerosols
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rather than considering different activation ratios for varying aerosol
types in an air mass. Based on this assumption, there have been similar
parameterization attempts to link the variations in cloud Nd to the varia-

tions of sulfate (SO2−
4 Þ, which is one of the most abundant aerosol species

in the atmosphere (Boucher & Lohmann, 1995; Haywood & Boucher,
2000; Kiehl et al., 2000; Lohmann & Feichter, 1997; Novakov et al., 1994).

Figure 3 demonstrates the relationship between the cloud layer‐mean Nd

and subcloudNa for 23 BB‐impacted soundings in contrast to 266 non‐BB‐
impacted soundings over the five campaigns. Resampling of data via
bootstrapping yielded the median value (95% confidence interval) of α =
7.73 (1.79‐26.23), β = 0.56 (0.28‐0.81), and a correlation coefficient (r) of
0.78 (0.44‐0.89) for non‐BB‐impacted data. These three values were as fol-
lows for BB‐impacted soundings: α = 33.25 (12.18‐65.05), β = 0.26 (0.15‐
0.42), and r = 0.70 (0.52‐0.80). Thus, there was a significant difference in
median α and β values for the BB‐impacted cases as they were outside
the 95% confidence interval of values from non‐BB‐impacted cases.
When combined, all the data in this study for BB and non‐BB conditions
yielded α= 9.52 (2.50‐33.23), β= 0.50 (0.26‐0.76), and r= 0.76 (0.40‐0.89).
Table 2 contrasts this study's values for α and β with those from other
work. The range of β spans from 0.26 to 0.96 with an average of 0.52,
which is a range that includes β values from this study for BB‐ and non‐
BB‐impacted conditions. For non‐BB conditions in this work, the β value
falls close to those from other studies with a similar maximum subcloud
Na value; in contrast, the value of β for BB conditions in this study

(0.26) is just as low as those from other studies with a much higher maximum subcloud Na value. The rela-
tionship between β and the highest Na concentration in this work (separated for BB and non‐BB conditions)
and for other studies is shown in Figure 4, where it is demonstrated that values adhere well to a logarithmic
fit (r=−0.78, p= 0.01). Interestingly, if data are compared between BB and non‐BB conditions from Figure 3
below the maximum Na value recorded for non‐BB conditions (522 cm3), the value of β for BB conditions
(0.22) is still much lower than that for non‐BB conditions.

The observed difference in theNd‐Na relationship between BB‐ and non‐BB‐impacted conditions in this work
is similar to several other studies in that higher activation fractions were observed for cleaner air masses
(Albrecht et al., 1995; Lu et al., 2008; Martin et al., 1994; O'Dowd et al., 2002). Factors explaining the differ-
ences in β could include variability in updraft speed and size distribution effects (Modini et al., 2015; Wood,
2012 and references therein). Also, it has been shown that reduced adiabaticity in clouds coincides with
higher activation fractions (Braun et al., 2018), which could be an artifact of higher drizzle rates and thus

Figure 3. Relationship between cloud layer‐mean Nd and subcloud Na for
BB‐impacted soundings from NiCE and FASE (black markers with black
line fit), in addition to non‐BB‐impacted soundings from MASE I and
II, NiCE, BOAS, and FASE (red markers with red line fit). The solid line
shows the median and different dashed lines show the 95% confidence
interval determined via bootstrapping.

Table 2
A review of parameterizations provided for the relationship between Nd and Na

Region a β r Highest Na (cm
−3) Study

Northeast Pacific 7.73 0.56 0.78 500 This study (non‐BB)
Northeast Pacific 33.25 0.26 0.70 1,800 This study (BB)
Around the British Isles and over the Atlantic near the Azores Islands 14 0.26 0.95 12,000 Raga and Jonas (1993)
Houston and the northwestern Gulf Of Mexico 33.3 0.26 0.66 11,000 Lu et al. (2008)
Vicinity of Houston, TX 36.3 0.35 N/A 10,000 Jiang et al. (2008)
Southeast Pacific 7.7 0.55 0.89 600 Terai et al. (2012)
Northeast Atlantic and North Pacific 2.75 0.73 N/A 400 O'Dowd et al. (1999)a

Northeast Pacific 1.03 0.96 0.95 500 Twohy et al. (2005)b

Pacific offshore of California, Chile, and Atlantic offshore of Namibia 13.39 0.51 0.94 700 Hegg et al. (2012)c

Note. All mentioned parameterizations are from studies based on in situ measurements. Reported α and β values are either reported directly from a power law
relationship or were derived from a different type of parameterization by power law fitting. Values reported in the r column belong to the original form of equa-
tions and N/A values denote that no correlation coefficient was provided by a particular study.
aOriginally presented in form of Nd = 197 (1 − exp(−6.13× 10−3 Na)).

bOriginally presented in form of Nd = −2.2 + 1.027 Na – 0.000837 Na
2. cOriginally

presented in form of Nd = 0.72 Na + 47.
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scavenging of subcloud aerosols (Duong, Sorooshian, Craven, et al., 2011;
MacDonald et al., 2018). Lastly, another factor affecting the activation
fraction could be aerosol hygroscopic properties, where BB aerosol are
typically less CCN active than the background aerosol in the study region
(Hegg et al., 2008; Hersey et al., 2009; Shingler et al., 2016). Section 3.6
addresses chemical and hygroscopic differences between BB and non‐BB
aerosols in more detail.

3.3. Vertical In‐Cloud Structure of Nd

Various in situ observational and large eddy simulation studies reported a
vertically homogeneous structure for Nd in marine Sc (Grosvenor et al.,
2018 and references therein; Painemal & Zuidema, 2011). To assess the
degree of vertical Nd homogeneity in the study region during periods of
BB influence, vertical profiles of Nd for the selected soundings in Table 1
were examined (Figure 5). Thirteen BB‐impacted clouds were compared
to seven non‐BB ones from NiCE and FASE.

For both campaigns, BB‐impacted clouds exhibited higher vertically
resolved mean and standard deviation values for Nd values along the
depth of clouds as compared to non‐BB‐impacted clouds. Cloud layer‐
mean values for the mean and standard deviation of Nd were as follows:
non‐BB = 71 ± 7 cm3; BB = 184 ± 28 cm3. Albrecht et al. (1995) similarly
reported both lower absolute values and less vertical variability inNd for a
Sc sheet when exposed to cleaner maritime air (PCASP Na ~ 50 cm3; Nd ~
50 cm03) as compared to more polluted continental air (PCASP Na ~ 1,700
cm3; Nd ~ 250 cm3).

There was no evidence of any type of enhancement in Nd near cloud top, which presumably would have
been an indicator for secondary activation of aerosols near cloud top. This result is consistent with
Figure 2 that primary activation of subcloud aerosols plays the dominant role in governing Nd.

3.4. Nd Relationship with re and R

Sections 3.1 and 3.2 examined the process of droplet activation by comparing CCN and Na to Nd, and now,
this section probes relationships between Nd and two other cloud properties for varying BB influence: cloud
droplet effective radius (re) and rain rate (R). This analysis is conducted within the framework of how pre-
vious investigations have examined such relationships, with our results compared to those studies.

Figure 6a shows the relationship between re versus the ratio of LWP/Nd for BB versus non‐BB conditions;
note that all three parameters are cloud layer‐mean values for consistency. Thirty BB‐impacted soundings
from NiCE and FASE were compared to more than 300 background non‐BB‐impacted soundings from
MASE I and II, NiCE, BOAS, and FASE. The results do not show a significantly different response of
re to BB particles as compared to non‐BB particles. In both scenarios, a power law correlation exists
between re and LWP/Nd with an exponent of 0.22 and 0.21 and a correlation coefficient of 0.95 and
0.91 for BB and non‐BB conditions (p < 0.01 for both), respectively. Various studies have applied similar
parameterizations between re and LWC/Nd with a power law scheme, with the exponent being ~0.33 for
LWC/Nd (Jones & Slingo, 1996; Kiehl et al., 2000; Lu et al., 2008; Reid et al., 1999; Rotstayn, 1999). Liu
and Hallet (1997) suggested a similar parameterization and validated it by comparison with in situ col-
lected data for non‐precipitating water clouds. The values of 0.21 and 0.22 in this study are lower than
0.33 potentially owing to differences when using layer‐mean values (e.g., LWP) rather than vertically
resolved values (e.g., LWC), differences in the Nd (this study: 30–328 cm3) and LWP range examined (this
study: 11–338 g m2), cloud dynamical processes, meteorology, and spatial scale of analysis (McComiskey
et al., 2009).

In another study by Reid et al. (1999) for clouds partially embedded in smoky haze during the SCAR‐B
field project over the Amazon Basin, a power law relationship was developed with an exponent of 0.31
for LWC/Nd. As they compared the results from BB‐impacted warm non‐precipitating clouds to less

Figure 4. Correlation analysis between maximum subcloud Na concentra-
tion and the β value obtained from the NdeαNβ

a parameterization for
different studies (green markers): Hegg et al. (2012, H12), Jiang et al. (2008,
J08), Lu et al. (2008, L08), O'Dowd et al. (1999, OD99), Raga and Jones
(1993, RJ93), Terai et al. (2012, T12), and Twohy et al. (2005, T05). Results
from the current study are included in derivation of the fitted line and are
denoted for BB (black marker) and non‐BB (red marker) impacted
situations.
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polluted conditions such as the east coast of the United States, they con-
cluded that even for extreme cases of clouds impacted by BB aerosols,
the parameterization provided for re is still valid. This is a result similar
to the one obtained for our region of study as the exponent did not
change much between BB and non‐BB conditions.

Figure 6b demonstrates the correlation between R and the ratio of
LWP/Nd and compares results from 30 BB‐impacted soundings of
NiCE and FASE campaigns with 232 non‐BB‐impacted soundings from
MASE I and II, NiCE, and FASE campaigns (note that R data were
unavailable during BOAS). Correlation coefficients of linear best‐fit
lines in log‐log space were quantified based on the parameterization
provided by Khairoutdinov and Kogan (2000), which demonstrated that
variations in log(R) are negatively correlated with log (Nd) in a linear
manner. Our analysis shows similar results for both scenarios (BB ver-
sus non‐BB) with power law fitting; the resulting exponents were 1.06
(r = 0.61, p < 0.01) and 1.08 (r = 0.62, p < 0.01) for BB and non‐BB
conditions, respectively. In contrast, Comstock et al. (2004) presented
a power law relationship with an exponent of 1.75 for LWP/Nd for an
analysis conducted over the eastern Pacific Ocean. The differences in
results can be partly attributed to factors including those outlined by
Duong et al. (2011a) such as data analysis choices (e.g., calculation
methods for parameters such as R, minimum R threshold) and spatial
scale of data analysis.

While Sections 3.1 and 3.2 showed significant differences in aerosol‐Nd

relationships between BB and non‐BB conditions, there were no such
differences when comparing Nd to re and R for these two conditions.
It can be concluded that the existing bulk parameterizations are valid
for both BB and non‐BB conditions as long as Nd is captured accu-
rately. It is cautioned though that the exponents observed in our study
in Figures 6a and 6b are reduced as compared to previous work, which
may at least be partly due to differences in measurement platforms,
spatial scales of analysis, and how parameters were calculated (e.g.,
cloud‐layer mean values used here).

3.5. Cloud Water Composition

Cloud water chemical measurements help to both identify influences from different air mass sources and
shed light on cloud‐gas‐aerosol interaction processes like wet scavenging (Houghton, 1955; MacDonald
et al., 2018; Petrenchuk & Drozdova, 1966). To further improve our understanding of BB plume impacts
on marine Sc, we analyzed cloud water samples collected from BB‐impacted clouds and contrasted them
against non‐BB‐impacted ones (cases listed in Table 1). Total air‐equivalent mass concentrations of mea-
sured species are reported in Table 1 for NiCE and FASE and further categorized into BB and non‐BB
categories. Additionally, the average mass concentration and mass fraction of measured species in BB and
non‐BB conditions are reported in Tables S2 and S3 for NiCE and FASE, respectively. For species including

SO2−
4 , Mg2+, Ca2+, and K+, the non‐sea‐salt portion is reported based on pure sea water ratios (Seinfeld &

Pandis, 2016).

For both campaigns, the total mass concentration (μg m−3) of species is significantly higher for BB‐impacted
soundings with values of 29.66 ± 14.64 and 11.73 ± 10.37 fromNiCE and FASE, respectively, as compared to
1.21 ± 0.23 and 1.71 ± 1.21 (μg m−3) for non‐BB‐impacted samples. This equates to an approximate increase
in total mass concentration of 2,351% for NiCE and 586% for FASE. The enhancement in mass loading in BB
conditions is partly attributed to higher concentrations of aerosol and gaseous species in BB plumes that
enter into clouds through either cloud top or cloud base. The similarity in mass loadings between NiCE
and FASE during non‐BB conditions is expected as the predominant sources impacting the region in the
absence of wildfires is similar between different years in the summer months. However, the difference in

Figure 5. The vertical profiles of Nd plotted as a function of cloud normal-
ized depth for the selected soundings shown in Table 1. The solid black
and red lines represent average values for conditions of BB influence and
minimal impact from any sources of aerosol pollution, respectively. Dashed
lines indicate one standard deviation.
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mass concentrations between NiCE and FASE during BB conditions can be explained by some combination
of factors related to the fire characteristics (fuel type, flame condition, fire strength) and transport pathway
from the fire source to the sampled clouds as during NiCE the fires were farther to the north while in FASE
the fire source was very close to the base of operations in Marina.

Figures 7 and 8 show the relative mass fractions of species in BB and non‐BB‐impacted cloud water samples
during NiCE and FASE, respectively. For the FASE campaign, the mass fraction of non‐sea‐salt species is
much higher for BB‐impacted cloud water samples as compared to the non‐BB ones. This was especially
the case for NO3

−, which is associated with BB particles in the study region (Prabhakar et al., 2014). In sharp
contrast, during NiCE, the total mass concentrations of species derived from sea salt (e.g., Na+, Cl‐) were
more enhanced for BB conditions; in fact, when excluding Na+ and Cl− from the analysis, the total mass
concentration of species in FASE BB periods (7.57 μg m−3) exceeded that during NiCE (5.98 μg m−3). It is
uncertain as to why sea salt mass was so high (Na+ + Cl− = 23.64 μg m−3) during BB periods in NiCE,
and it is very likely that this was only a coincidence without any relationship between the presence of a
BB plume aloft and higher sea salt fluxes. During both campaigns, regardless of BB or non‐BB conditions,
the Cl−:Na+ mass concentration ratios were close to the expected ratio for pure sea salt (1.81): NiCE =
1.71 ± 0.12 (BB) and 1.65 ± 0.40 (non‐BB); FASE = 1.76 ± 0.36 (BB) and 1.76 ± 0.04 (non‐BB). The slight
reductions as compared to sea salt are likely attributed to well‐documented chloride depletion reactions
owing to inorganic and organic acids that are ubiquitous in the study region (Braun et al., 2017). Future
research is warranted to identify if the extent of chloride depletion observed here was minor owing to the
abundance of surface area provided by crustal material to accommodate acidic gases, thereby relieving sea
salt particles.

A noteworthy difference between BB and non‐BB conditions was the concentration increase in crustally
derived species (e.g., Ca2+, Si, and Mg2+) for the former, which was especially pronounced during
FASE. During FASE, Ca2+ and Mg2+ exhibited a significant correlation (r = 0.92, p < 0.01). This sug-
gests a similar source for Ca2+and Mg2+ in FASE samples, which is most probably terrestrial dust; this
is confirmed by their significant correlation with Si (r = 0.64, p = 0.03), which is a crustal tracer in the
study region (Wang et al., 2014). Soil dust can be entrained into buoyant BB plumes, which is common
across the western United States (Schlosser et al., 2017 and references therein). The proximity of the
FASE fire to the sampling areas may be a reason for why the chemical signature of crustal matter
was more evident than NiCE when the absolute concentrations of the same crustal species were lower
by an order of magnitude.

The enhancement of crustal tracer species in FASE BB plumes can explain why the average pH in BB‐
impacted cloud water was significantly higher (6.85 ± 0.22) than non‐BB‐impacted samples (4.81 ± 0.08).

Figure 6. (a) Correlation analysis between re and LWP/Nd for BB‐impacted soundings from NiCE and FASE (black
markers) as compared to non‐BB‐impacted soundings from MASE I and II, NiCE, BOAS, and FASE (red markers).
(b) Same as (a) except with R in place of re. Power law fits are provided for both panels separately for BB‐impacted and
non‐BB‐impacted soundings, with that of Comstock et al. (2004) additionally added as a dashed line in (b).
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Such a difference was not observed in the pH of samples collected during NiCEwith values of 4.21 ± 0.28 and
4.63 ± 0.16 for BB and non‐BB‐impacted samples, respectively. Higher pH values typically coincide with
enrichment of crustal species, which increase the alkalinity of cloud water samples as observed in other
regions (e.g., Loye‐pilot & Morelli, 1988; Rhoades et al., 2010; Schwikowski et al., 1995; Sorooshian,
Shingler, et al., 2013; Williams & Melack, 1991).

Of note is that a series of organic acids (oxalate, acetate, formate, glycolate, succinate, adipate, maleate, pyr-
uvate) were collectively higher in concentration by an order of magnitude in BB‐impacted clouds during
NiCE (1.68 μg m−3) versus FASE (0.21 μg m−3), whereas their respective non‐BB levels were much lower
(0.04–0.07 μg m−3 for FASE and NiCE, respectively). During NiCE, the additional transport time of the
BB plumes to the points of measurement may have aided in organic acid formation owing to the lengthy
chemistry required to produce such species from gaseous volatile organic compound precursors (Mardi
et al., 2018). Furthermore, there could have been recondensation of organic species following their evapora-
tion after aging was allowed to ensue, which has been shown in other studies (e.g., Akagi et al., 2012;
Grieshop et al., 2009).

As further support for aging leading to more organic acids during the NiCE BB periods, Figure 9 shows the
spatial distribution of two relevant ratios from the AMS instrument during one particular flight when the
plume was traced from near the source at southern Oregon toward the central coast of California: the frac-
tion of organic atm/z 44 (f44) and of organic atm/z 60 (f60). The former ratio (f44) increased with plume trans-
port indicating that the plume aged quickly, yielding a relatively high amount of oxygenated organic
material such as organic acids (Ng et al., 2011). The reduction of (f60) along the plume track showed that
levoglucosan, a marker for fresh BB emissions (Alfarra et al., 2007), decreased relatively quickly and that
consequently, primary organic aerosol near the source was replaced by secondary organic aerosol farther

Figure 7. Average mass fraction of various species in collected cloud water samples during the NiCE campaign based on
the selected cases in Table 1. Panel (a) demonstrates the average mass ratios obtained from non‐BB‐impacted samples
and panel (b) shows results for BB‐impacted samples. Panels (c) and (d) are expansions of the portion denoted as “Rest”
in panels (a) and (b), respectively. Species which contribute to the slice labeled as the “Rest” in panels (c‐d) are reported
in Table S4. Average pH and total mass concentrations for BB and non‐BB‐impacted soundings of each campaign are
reported in Table 1.
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downwind. It is noted that levoglucosan has been observed to decrease when exposed to hydroxy radicals
(Hennigan et al., 2010) and possibly due to dilution.

3.6. Cloud Droplet Residual Particle Composition

The relative mass concentrations of nonrefractory aerosol constituents measured with the CVI‐AMS
technique are shown in Figure 10 for non‐BB and BB‐impacted soundings from NiCE (unavailable dur-
ing FASE). The main difference is that, relative to non‐BB conditions, BB influenced samples coincided
with an increase in the organic fraction (95% confidence intervals: BB = 64–66%, non‐BB = 27–32%)
and a decrease in the mass fraction of SO4

2− (BB = 19–21%, non‐BB = 50–55%). Nitrate and NH4
+ mass

fractions exhibited less change between the two types of conditions (BB/non‐BB): NO3
− = 6–7%/4–6%;

NH4
+ = 8–9%/11–15%. Numerous studies have reported that BB plumes are enriched with organic con-

stituents (e.g., Akagi et al., 2012; Duong, Sorooshian, & Feingold, 2011; Formenti et al., 2003; Gao et al.,
2003; Reid et al., 1998), and thus, the remarkable enhancement in the organic mass fraction in BB‐
impacted clouds is expected. The relative importance of SO4

2− decreased in BB‐impacted clouds simply
due to the usual sources in the boundary layer (DMS, shipping) being outweighed by the injection of
organics. While there was significant enhancement of NO3

− in the regional BB plumes, the heating
of the CVI counter‐flow promotes repartitioning of NO3

− back to the gas phase as has been documented
in past work (e.g., Hayden et al., 2008). While these results demonstrate the impact of BB plumes on
droplet residual chemistry, it is noted that there are differences with the cloud water results for the fol-
lowing reasons: (i) The AMS is limited to submicrometer aerosols unlike cloud water collection; (ii)
semi‐volatile species are vulnerable to evaporation in the heated counterflow of the CVI inlet (and thus
would not be sampled by the AMS) unlike cloud water collection; and (iii) the cloud water collector can
sample constituents such as sea salt and an assortment of crustal elements that the AMS cannot.

As hinted to before in the discussion of CCN activation ratios, aerosol compositional effects can potentially
be important for CCN activity for the regional‐scale BB events sampled in this work.Martin et al. (1994) cited

Figure 8. Same as Figure 7, but for the FASE campaign.
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differences in aerosol composition in explaining why the activation ratio of continental aerosols was
different than marine aerosols. Similar reasoning of higher CCN activity for more water‐soluble aerosol
types has been provided by other studies in our study region based on ship‐board measurements
(Wonaschuetz et al., 2013) and modeling studies (Sanchez et al., 2016). As shown by the CVI‐AMS results
and confirmed by previous studies in the same region, BB air masses have much higher concentrations of
organics (Crosbie et al., 2016; Mardi et al., 2018; Maudlin et al., 2015), which have reduced hygroscopicity
as compared to aerosol less enriched with organics (e.g., Hersey et al., 2009; Shingler et al., 2016). While it
is difficult to attribute the relative importance of chemical effects to the reduced activation fraction for BB
conditions in this study, it is at least one plausible factor that may have played a role.

Figure 10. Averagemass fraction of species measured by an AMS coupled to a CVI inlet during the NiCE campaign for (a)
clouds with minimal influence from aerosols and (b) BB‐impacted clouds. These data are based on the selected cases
summarized in Table 1.

Figure 9. Twin Otter flight path colored by (A) the fraction of organic atm/z 44 (f44) and (B) the fraction of organic atm/z
60 (f60) for NiCE Research Flight 17 on 30 July 2013. Shown are samples containing smoke from the cluster of fires
in southern Oregon (blue square). Greater f44 is an indication of oxidized organic aerosol (largely associated with organic
acids, Ng et al., 2011), whereas greater f60 indicates a higher fraction of levoglucosan, a marker for fresh BB emissions
(Alfarra et al., 2007).
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4. Conclusions

This study represents the second part of a two‐part paper series examining BB plumes off the California
coast. The first study (Mardi et al., 2018) characterized plume properties, while this study examined interac-
tions between plumes and Sc clouds. The main results of this study are as follows:

1. Stronger relationships between subcloud aerosol properties with cloud layer‐mean Nd values and the
lack of a clear vertical enhancement in Nd at cloud top indicated that primary activation of subcloud
CCN was more important in governing Nd values than secondary activation of CCN entrained at
cloud top. The data results indicate that the MBL BB aerosols likely were sourced to a large extent
from the FT at some point. An instantaneous correlation between above‐ and below‐cloud BB parti-
cles is complicated though by factors such as the time dependence of entrainment and also
precipitation.

2. BB‐impacted clouds exhibited higher vertically resolved mean and standard deviation values for Nd

values along the depth of clouds as compared to non‐BB‐impacted clouds.
3. Lower CCN activation fractions were observed for BB‐impacted clouds as compared to non‐BB clouds

owing at least to some extent to less hygroscopic aerosol constituents.
4. Relationships between Nd and either re or R were similar regardless of the level of influence from BB

plumes, indicating that parameterizations relating these cloud properties can handle both BB and non‐
BB conditions as long as the Nd value is known.

5. Cloud water data show that in FASE there was more enhancement in crustal tracer species due likely to
the proximity of the fires to the sampling area, which was more conducive to measurement of coarse dust
aerosols entrained in the buoyant BB plumes. Consequently, pH values were much more enhanced in
BB‐impacted clouds during FASE. In contrast during NiCE, higher overall mass concentrations of
organic acids are thought to have arisen due to longer transport times that promoted more production
of these species.

6. Cloud droplet residual particle composition results reveal significant enhancements in the relative
amount of organics during BB periods at the expense of sulfate, while nitrate and ammonium remain
relatively similar in their mass fractions.

The results of this study are useful in terms of contrasting with other regions where BB plumes have the abil-
ity to impact cloud properties. In particular, impacts of BB plumes on cloud composition are generally
understudied and important for future research as such modifications have an impact on both aqueous
chemistry (e.g., Keene et al., 2015; Sorooshian, Wang, et al., 2013) and ecosystems after wet deposition of
nutrients and contaminants (e.g., Galloway et al., 2004; Meskhidze et al., 2005).
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